Mathematical study of wind-driven oceanic motions

Anne-Laure Dalibard
Joint work with Laure Saint-Raymond

DMA - ENS
& CEREMADE - Université Paris-Dauphine

December 14, 2007
Journées SCASEN
Modèles mathématiques en mécanique des fluides
Plan

Introduction

The almost-periodic, resonant case

The random stationary, non-resonant case
Plan

Introduction
- Presentation of the model
- General strategy

The almost-periodic, resonant case

The random stationary, non-resonant case
Introduction

Presentation of the model

General strategy

The almost-periodic, resonant case

The random stationary, non-resonant case
Main assumptions in the interior

- **Starting point**: Ocean = homogeneous, incompressible fluid in a rotating frame.
 → 3D Navier-Stokes equations with Coriolis force $\Omega \wedge u$.

- **Coriolis acceleration**:
 → f-plane approximation: $f = 2|\Omega| \sin(\theta)$ homogeneous ("small" geographical zone, midlatitudes),
 → effect of horizontal component of Ω is neglected.

- **Frictional forces F**: notion of "turbulent viscosity":

$$F = A_v \partial_z^2 u + A_h \Delta_h u, \quad A_h, A_v > 0, \ A_h \neq A_v.$$

- **Conclusion**: the velocity u of currents inside the ocean is described by

$$\partial_t u + (u \cdot \nabla)u + \Omega \wedge u - A_v \partial^2_z u - A_h \Delta_h u + \nabla p = 0,$$

$$\nabla \cdot u = 0. \quad (1)$$
Main assumptions in the interior

- **Starting point**: Ocean = homogeneous, incompressible fluid in a rotating frame.
 - 3D Navier-Stokes equations with Coriolis force $\Omega \wedge u$.

- **Coriolis acceleration**:
 - f-plane approximation: $f = 2|\Omega| \sin(\theta)$ homogeneous ("small" geographical zone, midlatitudes),
 - effect of horizontal component of Ω is neglected.

- **Frictional forces \mathcal{F}**: notion of "turbulent viscosity":
 \[\mathcal{F} = A_v \partial_z^2 u + A_h \Delta_h u, \quad A_h, A_v > 0, \ A_h \neq A_v. \]

- **Conclusion**: the velocity u of currents inside the ocean is described by
 \[\partial_t u + (u \cdot \nabla) u + \Omega \wedge u - A_v \partial_z^2 u - A_h \Delta_h u + \nabla p = 0, \]
 \[\nabla \cdot u = 0. \]
Main assumptions in the interior

- **Starting point**: Ocean = homogeneous, incompressible fluid in a rotating frame.
 → 3D Navier-Stokes equations with Coriolis force $\boldsymbol{\Omega} \wedge u$.

- **Coriolis acceleration**:
 → f-plane approximation: $f = 2|\boldsymbol{\Omega}| \sin(\theta)$ homogeneous ("small" geographical zone, midlatitudes),
 → effect of horizontal component of $\boldsymbol{\Omega}$ is neglected.

- **Frictional forces \mathcal{F}**: notion of "turbulent viscosity":
 \begin{equation}
 \mathcal{F} = A_v \partial_z^2 u + A_h \Delta_h u, \quad A_h, A_v > 0, \quad A_h \neq A_v.
 \end{equation}

- **Conclusion**: the velocity u of currents inside the ocean is described by
 \begin{equation}
 \partial_t u + (u \cdot \nabla) u + \boldsymbol{\Omega} \wedge u - A_v \partial_z^2 u - A_h \Delta_h u + \nabla p = 0,
 \nabla \cdot u = 0. \quad (1)
 \end{equation}
Main assumptions in the interior

- **Starting point**: Ocean = homogeneous, incompressible fluid in a rotating frame.
 → 3D Navier-Stokes equations with Coriolis force $\Omega \wedge u$.

- **Coriolis acceleration**:
 → f-plane approximation: $f = 2|\Omega| \sin(\theta)$ homogeneous ("small" geographical zone, midlatitudes),
 → effect of horizontal component of Ω is neglected.

- **Frictional forces \mathcal{F}**: notion of "turbulent viscosity"

 $$\mathcal{F} = A_v \partial^2_z u + A_h \Delta_h u, \quad A_h, A_v > 0, \ A_h \neq A_v.$$

- **Conclusion**: the velocity u of currents inside the ocean is described by

 $$\partial_t u + (u \cdot \nabla) u + \Omega \wedge u - A_v \partial^2_z u - A_h \Delta_h u + \nabla p = 0,$$

 $$\nabla \cdot u = 0. \quad (1)$$
Boundary conditions

- **Bottom of the ocean**: flat \((h_B \equiv 0)\).
 Homogeneous Dirichlet boundary condition (no-slip):
 \[
 u|_{z=0} = 0.
 \]

- **Surface of the ocean**: rigid lid approximation: \(h \equiv D\).
 Description of wind-stress:
 \[
 \partial_z u_h|_{z=D} = \frac{1}{\rho A_v} \sigma_h,
 \]
 \[
 u_3|_{z=D} = 0.
 \]

- **Horizontal boundaries**: box \(\rightarrow\) horizontal domain:
 \(\omega_h = [0, La_1) \times [0, La_2)\) with periodic boundary conditions.
Scaling assumptions

- High rotation limit: Rossby number \(\varepsilon := \frac{U}{2\Omega|L|} \ll 1 \).

- Horizontal and vertical viscosities:
 \[\frac{A_h}{\rho UL} \approx 1, \quad \nu := \frac{LA_v}{\rho UD^2} \ll 1. \]

- Amplitude of wind stress: \(\alpha := \frac{\sigma_0 D}{\rho A_v} \gg 1 \).

\(\Omega \) Earth rotation vector
\(L \) Horizontal length scale
\(U \) Horizontal velocity scale
\(D \) Vertical length scale
\(A_h \) Turbulent horizontal viscosity
\(A_v \) Turbulent vertical viscosity
\(\rho \) Density
\(\sigma_0 \) Amplitude of wind velocity
Scaling assumptions

- **High rotation limit**: Rossby number \(\varepsilon := \frac{U}{2\Omega |L|} \ll 1. \)

- **Horizontal and vertical viscosities**:
 \[
 \frac{A_h}{\rho UL} \approx 1, \quad \nu := \frac{LA_v}{\rho UD^2} \ll 1.
 \]

- **Amplitude of wind stress**:
 \(\alpha := \frac{\sigma_0 D}{\rho A_v} \gg 1. \)

- **Conclusion**: the system in rescaled variables becomes
 \[
 \partial_t u + u \cdot \nabla u + \frac{1}{\varepsilon} e_3 \wedge u + \nabla p - \Delta_h u - \nu \partial_z^2 u = 0, \\
 \text{div} u = 0, \\
 u|_{z=0} = 0, \\
 \partial_z u|_{h,z=a} = \alpha \sigma, \\
 u_3|_{z=a} = 0.
 \]
Modelization of the wind stress

- Full atmosphere/ocean coupled model is out of reach...
 → Effect of a **given wind stress** on ocean dynamics.

- **Time dependance** of wind stress:
 Coriolis op. \sim fast oscillations in time (freq. $\sim 1/\varepsilon$).
 → Interesting scaling : $\sigma = \sigma(t, t/\varepsilon, x_h)$.

- **First choice**: σ almost-periodic : [Masmoudi, 2000]

 $$\sigma(t, \tau, x_h) = \sum_{\mu \in M} \sum_{k_h \in \mathbb{Z}^2} \hat{\sigma}(t, \mu, k_h) e^{i k_h \cdot x_h} e^{i \mu \tau}$$

- **Second choice**: σ stationary :

 $$\sigma(t, \tau, x_h; \omega) = S(t, x_h, \theta_\tau \omega),$$

where

- $\omega \in E$, and (E, \mathcal{A}, μ) is a probability space,
- $(\theta_\tau)_{\tau \in \mathbb{R}}$ is a measure preserving transformation group actig on E.

Interest : introduce some **randomness** in the equation.
Introduction

Modelization of the wind stress

- Full atmosphere/ocean coupled model is out of reach...
 → Effect of a **given wind stress** on ocean dynamics.
- **Time dependance** of wind stress:
 Coriolis op. ⇏ fast oscillations in time (freq. ≈ 1/ε).
 → Interesting scaling: \(\sigma = \sigma \left(t, \frac{t}{\varepsilon}, x_h \right) \).
- **First choice**: \(\sigma \) almost-periodic: [Masmoudi, 2000]
 \[
 \sigma(t, \tau, x_h) = \sum_{\mu \in M} \sum_{k_h \in \mathbb{Z}^2} \hat{\sigma}(t, \mu, k_h) e^{i k_h \cdot x_h} e^{i \mu \tau}
 \]
- **Second choice**: \(\sigma \) stationary:
 \[
 \sigma(t, \tau, x_h; \omega) = S(t, x_h, \theta_\tau \omega),
 \]
 where
 - \(\omega \in E \), and \((E, A, \mu)\) is a probability space,
 - \((\theta_\tau)_{\tau \in \mathbb{R}}\) is a measure preserving transformation group acting on \(E \).
 Interest: introduce some randomness in the equation.
Modelization of the wind stress

- Full atmosphere/ocean coupled model is out of reach...
 → Effect of a **given wind stress** on ocean dynamics.

- **Time dependance** of wind stress:
 Coriolis op. ∼ fast oscillations in time (freq. ∼ $1/\varepsilon$).
 → Interesting scaling: $\sigma = \sigma(t, t/\varepsilon, x_h)$.

- **First choice**: σ almost-periodic: [Masmoudi, 2000]
 \[
 \sigma(t, \tau, x_h) = \sum_{\mu \in \mathcal{M}} \sum_{k_h \in \mathbb{Z}^2} \hat{\sigma}(t, \mu, k_h) e^{i k_h \cdot x_h} e^{i \mu \tau}
 \]

- **Second choice**: σ stationary:
 \[
 \sigma(t, \tau, x_h; \omega) = S(t, x_h, \theta_\tau \omega),
 \]
 where
 - $\omega \in E$, and (E, \mathcal{A}, μ) is a probability space,
 - $(\theta_\tau)_{\tau \in \mathbb{R}}$ is a measure preserving transformation group acting on E.

Interest: introduce some randomness in the equation.
Modelization of the wind stress

- Full atmosphere/ocean coupled model is out of reach...
 → Effect of a given wind stress on ocean dynamics.

- **Time dependance** of wind stress:
 Coriolis op. \sim fast oscillations in time (freq. $\sim 1/\varepsilon$).
 → Interesting scaling: $\sigma = \sigma(t, t/\varepsilon, x_h)$.

- **First choice**: σ almost-periodic: [Masmoudi, 2000]
 $$\sigma(t, \tau, x_h) = \sum_{\mu \in M} \sum_{k_h \in \mathbb{Z}^2} \hat{\sigma}(t, \mu, k_h) e^{ik_h \cdot x_h} e^{i\mu \tau}$$

- **Second choice**: σ stationary:
 $$\sigma(t, \tau, x_h; \omega) = S(t, x_h, \theta_\tau \omega),$$
 where
 - $\omega \in E$, and (E, A, μ) is a probability space,
 - $(\theta_\tau)_{\tau \in \mathbb{R}}$ is a measure preserving transformation group acting on E.

Interest: introduce some randomness in the equation.
Introduction

Modelization of the wind stress

- Full atmosphere/ocean coupled model is out of reach...
 → Effect of a given wind stress on ocean dynamics.

- **Time dependance** of wind stress:
 Coriolis op. \sim fast oscillations in time (freq. $\sim 1/\varepsilon$).
 → Interesting scaling: $\sigma = \sigma(t, \frac{t}{\varepsilon}, x_h)$.

- **First choice**: σ almost-periodic: [Masmoudi, 2000]
 \[
 \sigma(t, \tau, x_h) = \sum_{\mu \in M} \sum_{k_h \in \mathbb{Z}^2} \hat{\sigma}(t, \mu, k_h) e^{ik_h \cdot x_h} e^{i\mu \tau}
 \]

- **Second choice**: σ stationary:
 \[
 \sigma(t, \tau, x_h; \omega) = S(t, x_h, \theta_\tau \omega),
 \]
 where
 - $\omega \in E$, and (E, \mathcal{A}, μ) is a probability space,
 - $(\theta_\tau)_{\tau \in \mathbb{R}}$ is a measure preserving transformation group acting on E.

Interest: introduce some randomness in the equation.
Modelization of the wind stress

- Full atmosphere/ocean coupled model is out of reach...
 → Effect of a given wind stress on ocean dynamics.
- **Time dependance** of wind stress:
 Coriolis op. ⇨ fast oscillations in time (freq. \(\sim 1/\varepsilon \)).
 → Interesting scaling: \(\sigma = \sigma(t, \frac{t}{\varepsilon}, x_h) \).
- **First choice**: \(\sigma \) almost-periodic: [Masmoudi, 2000]
 \[
 \sigma(t, \tau, x_h) = \sum_{\mu \in M} \sum_{k_h \in \mathbb{Z}^2} \hat{\sigma}(t, \mu, k_h) e^{ik_h \cdot x_h} e^{i\mu \tau}
 \]
- **Second choice**: \(\sigma \) stationary:
 \[
 \sigma(t, \tau, x_h; \omega) = S(t, x_h, \theta_{\tau \omega}),
 \]
 where
 - \(\omega \in E \), and \((E, \mathcal{A}, \mu)\) is a probability space,
 - \((\theta_{\tau})_{\tau \in \mathbb{R}}\) is a measure preserving transformation group acting on \(E \).
 Interest: introduce some *randomness* in the equation.
Plan

Introduction

Presentation of the model
General strategy

The almost-periodic, resonant case

The random stationary, non-resonant case
Introduction

Brief review of results on rotating fluids

Ref: Chemin, Desjardins, Gallagher, Grenier.

- Dominant process: Coriolis operator:

\[L = P(e_3 \wedge \cdot); \]

Spectrum \(\{ \lambda_k := \frac{k_3}{|k|}, k \in \mathbb{Z}^3 \setminus \{0\} \} \).

→ Creation of waves propagating at speed \(\varepsilon^{-1} \).

- Filtering method [Grenier; Schochet]:
 Equation for \(u_L = \exp \left(\frac{t}{\varepsilon} L \right) u. \)

→ Passage to the limit as \(\varepsilon, \nu \to 0 \): envelope equations;

→ Problem: \(u_L \) does not match the boundary conditions.

- Construction of boundary layers [Colin-Fabrie; Desjardins-Grenier; Grenier-Masmoudi; Masmoudi ...]

→ Creation of source terms (Ekman pumping) in envelope equation.
Introduction

Brief review of results on rotating fluids

Ref: Chemin, Desjardins, Gallagher, Grenier.

- **Dominant process**: Coriolis operator:

\[
L = P(e_3 \wedge \cdot);
\]

Spectrum \(\{ \lambda_k := \frac{k_3}{|k|}, \quad k \in \mathbb{Z}^3 \setminus \{0\} \} \).

→ Creation of waves propagating at speed \(\varepsilon^{-1} \).

- **Filtering method** [Grenier; Schochet]:

Equation for \(u_L = \exp \left(\frac{t}{\varepsilon} L \right) u \).

→ Passage to the limit as \(\varepsilon, \nu \to 0 \): envelope equations;

→ Problem: \(u_L \) does not match the boundary conditions.

- **Construction of boundary layers** [Colin-Fabrie; Desjardins-Grenier; Grenier-Masmoudi; Masmoudi ...]

→ Creation of source terms (Ekman pumping) in envelope equation.
Introduction

Brief review of results on rotating fluids

Ref : Chemin, Desjardins, Gallagher, Grenier.

- **Dominant process**: Coriolis operator:

\[
L = P(e_3 \wedge \cdot);
\]

Spectrum \(\{ \lambda_k := \frac{k_3}{|k|}, k \in \mathbb{Z}^3 \setminus \{0\} \} \).

→ Creation of waves propagating at speed \(\varepsilon^{-1} \).

- **Filtering method** [Grenier ; Schochet] :
 Equation for \(u_L = \exp \left(\frac{t}{\varepsilon} L \right) u \).
 → Passage to the limit as \(\varepsilon, \nu \to 0 \): envelope equations;
 → Problem : \(u_L \) does not match the boundary conditions.

- **Construction of boundary layers** [Colin-Fabrie ; Desjardins-Grenier ; Grenier-Masmoudi ; Masmoudi ...]
 → Creation of source terms (Ekman pumping) in envelope equation.
Coupling between interior and boundary layer terms

Consider the following **Ansatz**

\[
 u(t, x, y, z) \approx u_{\text{int}} \left(t, \frac{t}{\varepsilon}, x, y, z \right) + u_{\text{BL}} \left(t, \frac{t}{\varepsilon}, x, y, z \right),
\]

where

- \(u_{\text{int}}(t, \tau) = \exp(-\tau L) w(t) + v_{\text{int}}(t, \tau), \quad v_{\text{int}} = O(\varepsilon) \);
 - **Role**: \(u_{\text{int}}(t, t/\varepsilon) \) satisfies the evolution equation (up to \(O(\varepsilon) \)) ;

- \(u_{\text{BL}}(\cdot, z) = u_T(\cdot, (a - z)/\eta) + u_B(\cdot, z/\eta), \quad \eta \ll 1 \);
 - **Role**: \(u_{\text{BL}} \) matches the horizontal boundary conditions.

Remarks :

- The horizontal BC for \(u_{\text{BL}} \) depend on \(u_{\text{int}} \);
- The vertical BC for \(v_{\text{int}} \) depends on \(u_{\text{BL}} \), and creates a source term (Ekman pumping) in equation for \(w \).

\(\rightarrow \) Coupling between \(u_{\text{int}} \) and \(u_{\text{BL}} \).
Coupling between interior and boundary layer terms

Consider the following **Ansatz**

\[
 u(t, x, y, z) \approx u_{\text{int}} \left(t, \frac{t}{\varepsilon}, x, y, z \right) + u_{\text{BL}} \left(t, \frac{t}{\varepsilon}, x, y, z \right),
\]

where

- \(u_{\text{int}}(t, \tau) = \exp(-\tau L) w(t) + v_{\text{int}}(t, \tau) \), \(v_{\text{int}} = \mathcal{O}(\varepsilon) \);

 Role: \(u_{\text{int}}(t, t/\varepsilon) \) satisfies the evolution equation (up to \(\mathcal{O}(\varepsilon) \));

- \(u_{\text{BL}}(\cdot, z) = u_T(\cdot, (a - z)/\eta) + u_B(\cdot, z/\eta) \), \(\eta \ll 1 \).

 Role: \(u_{\text{BL}} \) matches the horizontal boundary conditions.

Remarks:

- The horizontal BC for \(u_{\text{BL}} \) depend on \(u_{\text{int}} \);

- The vertical BC for \(v_{\text{int}} \) depends on \(u_{\text{BL}} \), and creates a source term (Ekman pumping) in equation for \(w \).

→ **Coupling** between \(u_{\text{int}} \) and \(u_{\text{BL}} \).
Method of resolution

Idea : define a **boundary layer operator** \(B \):
- **Input** : arbitrary horizontal boundary conditions.
- **Output** : divergence-free boundary layer term, matching the horizontal boundary conditions and equation at leading order.

and an **interior operator** \(U \):
- **Input** : arbitrary initial data and vertical boundary conditions.
- **Output** : interior term matching the vertical boundary conditions and equation at leading order.

→ “Loop” construction :
- at each step, adapt inputs of \(U \) and \(B \) such that BC and eq. are satisfied (at leading order).
- iterate this step until all error terms are sufficiently small.
Method of resolution

Idea: define a boundary layer operator B:

- **Input**: arbitrary horizontal boundary conditions.
- **Output**: divergence-free boundary layer term, matching the horizontal boundary conditions and equation at leading order.

and an interior operator U:

- **Input**: arbitrary initial data and vertical boundary conditions.
- **Output**: interior term matching the vertical boundary conditions and equation at leading order.

→ “Loop” construction:

- at each step, adapt inputs of U and B such that BC and eq. are satisfied (at leading order).
- iterate this step until all error terms are sufficiently small.
Plan

Introduction

The almost-periodic, resonant case
 Main result in the linear case
 The boundary layer operator
 The interior operator

The random stationary, non-resonant case
Plan

Introduction

The almost-periodic, resonant case
Main result in the linear case
The boundary layer operator
The interior operator

The random stationary, non-resonant case
Convergence result

Theorem: [D., Saint-Raymond, 2007] Let \(u = u^{\varepsilon, \nu} \) be the solution of

\[
\begin{align*}
\partial_t u + \frac{1}{\varepsilon} Lu - \nu \partial_z^2 u - \Delta_h u + \nabla p &= 0, \\
\text{div} u &= 0, \\
u|_{z=0} &= 0, \\
u_3|_{z=a} &= 0, \\
\partial_z u_h|_{z=a}(t) &= \frac{1}{(\varepsilon \nu)^{\frac{1}{4}}} \sum_{\mu, k_h} \hat{\sigma}(\mu, k_h) e^{i\mu \frac{t}{\varepsilon}} e^{i k_h \cdot x_h}.
\end{align*}
\]

Let \(w \) be the solution of the envelope equation. There exists a function \(u^{\text{sing}} \), of order \((\varepsilon \nu)^{-\frac{1}{4}} \) in \(L^\infty \), such that as \(\varepsilon, \nu \to 0 \),

\[
u^{\varepsilon, \nu} - \left(\exp \left(\frac{t}{\varepsilon} L \right) w(t) + u^{\text{sing}} \right) \to 0,
\]

in \(L^\infty(0, \infty; L^2) \cap L^2(0, \infty; H^1_h) \).
Remarks on the convergence result

- No *a priori* bounds for $u^{\varepsilon, \nu}$;
- In general, $u^{\varepsilon, \nu}$ does not remain bounded: destabilization of the whole fluid inside the domain.
- The **singular profile** u^{sing} is explicit. Linear response to forcing on the mode

$$k_h = 0, \mu = \pm 1.$$

In particular, u^{sing} does not depend on x_h and $u_3^{\text{sing}} \equiv 0$.
→ No singular Ekman transpiration velocity.

In the sequel:
- Construction of operators B (boundary layer), U (interior).
- Focus on uncommon behaviour: apparition of atypical boundary layers, singular profile.
Remarks on the convergence result

- No *a priori* bounds for $u^{\varepsilon, \nu}$;
- In general, $u^{\varepsilon, \nu}$ does not remain bounded: destabilization of the whole fluid inside the domain.
- The **singular profile** u^{sing} is explicit. Linear response to forcing on the mode

$$k_h = 0, \mu = \pm 1.$$

In particular, u^{sing} does not depend on x_h and $u^{\text{sing}}_3 \equiv 0$. → No singular Ekman transpiration velocity.

In the sequel:

- Construction of operators \mathcal{B} (boundary layer), \mathcal{U} (interior).
- Focus on uncommon behaviour: apparition of atypical boundary layers, singular profile.
Introduction

The almost-periodic, resonant case
- Main result in the linear case
- The boundary layer operator
- The interior operator

The random stationary, non-resonant case
The almost-periodic, resonant case

General setting

Ansatz:

\[u_{BL} = u_B \left(t, \frac{t}{\varepsilon}, x_h, \frac{z}{\sqrt{\varepsilon \nu}} \right) + u_T \left(t, \frac{t}{\varepsilon}, x_h, \frac{a - z}{\sqrt{\varepsilon \nu}} \right), \]

and

\[u_T / u_B = \sum_{k_h, \mu} \hat{u}_T / \hat{u}_B(t, k_h, \mu) e^{i\mu \tau} e^{ik_h \cdot x_h} \exp(-\lambda z). \]

Linearity: work with fixed \(k_h \) and \(\mu \) (\(\lambda = \lambda(k_h, \mu) \)).

Equation in rescaled variables:

\[i\mu \hat{u}_1 - \lambda^2 \hat{u}_1 - \hat{u}_2 + \varepsilon k_h^2 \hat{u}_1 + \varepsilon \nu \frac{k_1 k_2 \hat{u}_1 - k_2^2 \hat{u}_2}{\lambda^2 - \varepsilon \nu k_h^2} = 0, \]

\[i\mu \hat{u}_2 - \lambda^2 \hat{u}_2 + \hat{u}_1 + \varepsilon k_h^2 \hat{u}_2 + \varepsilon \nu \frac{-k_1 k_2 \hat{u}_2 + k_2^2 \hat{u}_1}{\lambda^2 - \varepsilon \nu k_h^2} = 0, \]

\[\sqrt{\varepsilon \nu} (ik_1 \hat{u}_1 + ik_2 \hat{u}_2) \pm \lambda \hat{u}_3 = 0. \]
The almost-periodic, resonant case

General setting

Ansatz:

\[u_{BL} = u_B \left(t, \frac{t}{\varepsilon}, x_h, \frac{z}{\sqrt{\varepsilon \nu}} \right) + u_T \left(t, \frac{t}{\varepsilon}, x_h, \frac{a - z}{\sqrt{\varepsilon \nu}} \right), \]

and

\[u_T / u_B = \sum_{k_h, \mu} \hat{u}_T / \hat{u}_B(t, k_h, \mu) e^{i \mu \tau} e^{ik_h \cdot x_h} \exp(-\lambda z). \]

Linearity: work with fixed \(k_h \) and \(\mu \) (\(\lambda = \lambda(k_h, \mu) \)).

Equation in rescaled variables:

\[
\begin{align*}
i \mu \hat{u}_1 & - \lambda^2 \hat{u}_1 - \hat{u}_2 + \varepsilon k_h^2 \hat{u}_1 + \varepsilon \nu \frac{k_1 k_2 \hat{u}_1 - k_2^2 \hat{u}_2}{\lambda^2 - \varepsilon \nu k_h^2} = 0, \\
i \mu \hat{u}_2 & - \lambda^2 \hat{u}_2 + \hat{u}_1 + \varepsilon k_h^2 \hat{u}_2 + \varepsilon \nu \frac{-k_1 k_2 \hat{u}_2 + k_2^2 \hat{u}_1}{\lambda^2 - \varepsilon \nu k_h^2} = 0, \\
\sqrt{\varepsilon \nu} (ik_1 \hat{u}_1 + ik_2 \hat{u}_2) & \pm \lambda \hat{u}_3 = 0.
\end{align*}
\]
The almost-periodic, resonant case

General setting

Ansatz:

\[u_{BL} = u_B \left(t, \frac{t}{\varepsilon}, x_h, \frac{z}{\sqrt{\varepsilon \nu}} \right) + u_T \left(t, \frac{t}{\varepsilon}, x_h, \frac{a - z}{\sqrt{\varepsilon \nu}} \right), \]

and

\[u_T/u_B = \sum_{k_h, \mu} \hat{u}_T/\hat{u}_B(t, k_h, \mu) e^{i\mu t} e^{ik_h \cdot x_h} \exp(-\lambda z). \]

Linearity: work with fixed \(k_h \) and \(\mu \) (\(\lambda = \lambda(k_h, \mu) \)).

Equation in rescaled variables:

\[i\mu \hat{u}_1 - \lambda^2 \hat{u}_1 - \hat{u}_2 + \varepsilon k_h^2 \hat{u}_1 + \varepsilon \nu \frac{k_1 k_2 \hat{u}_1 - k_1^2 \hat{u}_2}{\lambda^2 - \varepsilon \nu k_h^2} = 0, \]

\[i\mu \hat{u}_2 - \lambda^2 \hat{u}_2 + \hat{u}_1 + \varepsilon k_h^2 \hat{u}_2 + \varepsilon \nu \frac{-k_1 k_2 \hat{u}_2 + k_2^2 \hat{u}_1}{\lambda^2 - \varepsilon \nu k_h^2} = 0, \]

\[\sqrt{\varepsilon \nu} (ik_1 \hat{u}_1 + ik_2 \hat{u}_2) \pm \lambda \hat{u}_3 = 0. \]
The almost-periodic, resonant case

General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that $\det A_\lambda = 0$, where

$$A_\lambda = \begin{pmatrix} i\mu - \lambda^2 + \varepsilon k_h^2 + \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k_h^2} & -1 - \frac{\varepsilon \nu k_1^2}{\lambda^2 - \varepsilon \nu k_h^2} \\ 1 + \frac{\varepsilon \nu k_2^2}{\lambda^2 - \varepsilon \nu k_h^2} & i\mu - \lambda^2 + \varepsilon k_h^2 - \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k_h^2} \end{pmatrix}$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non-zero.
 → Stability by small linear perturbations.
 Conclusion: $\lambda = O(1)$ (bounded away from 0).

- $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ is zero.
 → Two sub-cases:
 - $k_h \neq 0$: atypical boundary layer ($\lambda = O(\sqrt{\varepsilon} + (\varepsilon \nu)^{1/4})$)
 - $k_h = 0$: $\lambda = 0$ is a solution !– singular profile (bifurcation).
General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that $\det A_\lambda = 0$, where

$$A_\lambda = \begin{pmatrix}
 i\mu - \lambda^2 + \varepsilon k_h^2 + \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k_h^2} & -1 - \frac{\varepsilon \nu k_1^2}{\lambda^2 - \varepsilon \nu k_h^2} \\
 1 + \frac{\varepsilon \nu k_2^2}{\lambda^2 - \varepsilon \nu k_h^2} & i\mu - \lambda^2 + \varepsilon k_h^2 - \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k_h^2}
\end{pmatrix}$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non zero.

 \rightarrow Stability by small linear perturbations.

 Conclusion: $\lambda = \mathcal{O}(1)$ (bounded away from 0).

- $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ is zero.

 \rightarrow Two sub-cases:
 - $k_h \neq 0$: atypical boundary layer ($\lambda = \mathcal{O}(\sqrt{\varepsilon} + (\varepsilon \nu)^{1/4})$).
 - $k_h = 0$: $\lambda = 0$ is a solution! (singular profile/bifurcation).
General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that $\det A_\lambda = 0$, where

$$A_\lambda = \begin{pmatrix}
 i\mu - \lambda^2 + \varepsilon k_h^2 + \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k_h^2} & \frac{\varepsilon k_1^2}{\lambda^2 - \varepsilon \nu k_h^2} - 1 \\
 \frac{\varepsilon k_2^2}{\lambda^2 - \varepsilon \nu k_h^2} & i\mu - \lambda^2 + \varepsilon k_h^2 - \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k_h^2}
\end{pmatrix}$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non zero.

 \rightarrow Stability by small linear perturbations.

 Conclusion: $\lambda = \mathcal{O}(1)$ (bounded away from 0).

- $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ is zero.

 \rightarrow Two sub-cases:
 - $k_h \neq 0$: atypical boundary layer ($\lambda = \mathcal{O}(\sqrt{\varepsilon} + (\varepsilon \nu)^{\frac{1}{4}})$).
 - $k_h = 0$: $\lambda = 0$ is a solution! \rightarrow singular profile (bifurcation).
The almost-periodic, resonant case

General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that $\det A_\lambda = 0$, where

$$A_\lambda = \begin{pmatrix}
i\mu - \lambda^2 + \varepsilon k_h^2 + \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k_h^2} & -1 - \frac{\varepsilon k_1^2}{\lambda^2 - \varepsilon \nu k_h^2} \\
1 + \frac{\varepsilon \nu k_2^2}{\lambda^2 - \varepsilon \nu k_h^2} & i\mu - \lambda^2 + \varepsilon k_h^2 - \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k_h^2}
\end{pmatrix}$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non zero.

 → Stability by small linear perturbations.

 Conclusion: $\lambda = O(1)$ (bounded away from 0).

- $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ is zero.

 → Two sub-cases:

 - $k_h \neq 0$: atypical boundary layer ($\lambda = O(\sqrt{\varepsilon} + (\varepsilon \nu^{1/4})]$).

 - $k_h = 0$: $\lambda = 0$ is a solution! → singular profile (bifurcation).
Question: find $\lambda \in \mathbb{C}$ such that $\det A_\lambda = 0$, where

$$A_\lambda = \begin{pmatrix} i\mu - \lambda^2 + \varepsilon k_h^2 + \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k_h^2} & -1 - \frac{\varepsilon \nu k_1^2}{\lambda^2 - \varepsilon \nu k_h^2} \\ 1 + \frac{\varepsilon \nu k_h^2}{\lambda^2 - \varepsilon \nu k_h^2} & i\mu - \lambda^2 + \varepsilon k_h^2 - \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k_h^2} \end{pmatrix}$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non-zero.

 → Stability by small linear perturbations.

 Conclusion: $\lambda = \mathcal{O}(1)$ (bounded away from 0).

- $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ is zero.

 → Two sub-cases:
 - $k_h \neq 0$: atypical boundary layer ($\lambda = \mathcal{O}(\sqrt{\varepsilon} + (\varepsilon \nu)^{\frac{1}{4}})$).
 - $k_h = 0$: $\lambda = 0$ is a solution! → singular profile (bifurcation).
Question: find $\lambda \in \mathbb{C}$ such that $\det A_{\lambda} = 0$, where

$$A_{\lambda} = \begin{pmatrix}
i \mu - \lambda^2 + \varepsilon k^2_h & \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k^2_h} & -1 - \frac{\varepsilon k^2_1}{\lambda^2 - \varepsilon \nu k^2_h} \\
1 + \frac{\varepsilon \nu k^2_2}{\lambda^2 - \varepsilon \nu k^2_h} & i \mu - \lambda^2 + \varepsilon k^2_h - \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k^2_h} & \end{pmatrix}$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i \mu & -1 \\ 1 & i \mu \end{pmatrix}$ are non zero.
 → Stability by small linear perturbations.
 Conclusion: $\lambda = \mathcal{O}(1)$ (bounded away from 0).

- $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i \mu & -1 \\ 1 & i \mu \end{pmatrix}$ is zero.
 → Two sub-cases:
 - $k_h \neq 0$: atypical boundary layer ($\lambda = \mathcal{O}(\sqrt{\varepsilon} + (\varepsilon \nu)^{\frac{1}{4}})$).
 - $k_h = 0$: $\lambda = 0$ is a solution! → singular profile (bifurcation).
The almost-periodic, resonant case

General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that $\det A_\lambda = 0$, where

$$A_\lambda = \begin{pmatrix}
i\mu - \lambda^2 + \varepsilon k_2^2 + \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k_2^2} & -1 - \frac{\varepsilon \nu k_1^2}{\lambda^2 - \varepsilon \nu k_2^2} \\
1 + \frac{\varepsilon \nu k_2^2}{\lambda^2 - \varepsilon \nu k_2^2} & i\mu - \lambda^2 + \varepsilon k_2^2 - \frac{\varepsilon \nu k_1 k_2}{\lambda^2 - \varepsilon \nu k_2^2}
\end{pmatrix}$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non zero.

 \rightarrow Stability by small linear perturbations.

 Conclusion: $\lambda = \mathcal{O}(1)$ (bounded away from 0).

- $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ is zero.

 \rightarrow Two sub-cases:
 - $k_h \neq 0$: atypical boundary layer ($\lambda = \mathcal{O}(\sqrt{\varepsilon} + (\varepsilon \nu)^{\frac{1}{4}})$).
 - $k_h = 0$: $\lambda = 0$ is a solution! \rightarrow singular profile (bifurcation).
Classical Ekman layers: $\mu \neq \pm 1$

At first order,

$$A_\lambda = \begin{pmatrix} i\mu - \lambda^2 & -1 \\ 1 & i\mu - \lambda^2 \end{pmatrix}.$$

Eigenvalues: $\lambda^2_{\pm} = i(\mu \pm 1) + o(1)$;

Eigenvectors: $w_{\pm} = (1, \pm i) + o(1)$.

Conclusion: basis of eigenvectors in \mathbb{C}^2.

Method: decompose the boundary condition δ_h (input of B) onto basis $\{w_+, w_-\}$:

$$\hat{\delta}_h(k_h, \mu) = \alpha_+ w_+ + \alpha_- w_-.$$

Horizontal part of the boundary layer term is given by

$$u_{B,h} = \left(\alpha_+ w_+ e^{-\lambda_+ z} + \alpha_- w_- e^{-\lambda_- z} \right) e^{i\mu \tau} e^{ik_h \cdot x_h}$$

$$u_{T,h} = \left(\varepsilon \nu \right)^{1/4} \left(\frac{\alpha_+}{\lambda_+} w_+ e^{-\lambda_+ z} + \frac{\alpha_-}{\lambda_-} w_- e^{-\lambda_- z} \right) e^{i\mu \tau} e^{ik_h \cdot x_h}.$$
Classical Ekman layers: $\mu \neq \pm 1$

At first order,

\[A_\lambda = \begin{pmatrix} i\mu - \lambda^2 & -1 \\ 1 & i\mu - \lambda^2 \end{pmatrix}. \]

Eigenvalues: $\lambda^2_\pm = i(\mu \pm 1) + o(1)$;

Eigenvectors: $w_\pm = (1, \pm i) + o(1)$.

Conclusion: basis of eigenvectors in \mathbb{C}^2.

Method: decompose the boundary condition δ_h (input of B) onto basis $\{w_+, w_-\}$:

\[\hat{\delta}_h(k_h, \mu) = \alpha_+ w_+ + \alpha_- w_-. \]

Horizontal part of the boundary layer term is given by

\[u_{B,h} = \left(\alpha_+ w_+ e^{-\lambda_+ z} + \alpha_- w_- e^{-\lambda_- z} \right) e^{i\mu \tau} e^{ik_h \cdot x_h}, \]

\[u_{T,h} = \left(\varepsilon \nu \right)^{\frac{1}{4}} \left(\frac{\alpha_+}{\lambda_+} w_+ e^{-\lambda_+ z} + \frac{\alpha_-}{\lambda_-} w_- e^{-\lambda_- z} \right) e^{i\mu \tau} e^{ik_h \cdot x_h}. \]
Classical Ekman layers: $\mu \neq \pm 1$

At first order,

$$A_\lambda = \begin{pmatrix} i\mu - \lambda^2 & -1 \\ 1 & i\mu - \lambda^2 \end{pmatrix}.$$

Eigenvalues: $\lambda^2_{\pm} = i(\mu \pm 1) + o(1)$;

Eigenvectors: $w_{\pm} = (1, \pm i) + o(1)$.

Conclusion: basis of eigenvectors in \mathbb{C}^2.

Method: decompose the boundary condition δ_h (input of B) onto basis $\{w_+, w_-\}$:

$$\hat{\delta}_h(k_h, \mu) = \alpha_+ w_+ + \alpha_- w_-.$$

Horizontal part of the boundary layer term is given by

$$u_{B,h} = \left(\alpha_+ w_+ e^{-\lambda_+ z} + \alpha_- w_- e^{-\lambda_- z} \right) e^{i\mu \tau} e^{ik_h \cdot x_h}$$

$$u_{T,h} = \left(\varepsilon \nu \right)^{1/4} \left(\frac{\alpha_+}{\lambda_+} w_+ e^{-\lambda_+ z} + \frac{\alpha_-}{\lambda_-} w_- e^{-\lambda_- z} \right) e^{i\mu \tau} e^{ik_h \cdot x_h}.$$
The almost-periodic, resonant case

Atypical boundary layers: \(\mu = \pm 1, k_h \neq 0 \)

\[
\det A_\lambda = 0 \Rightarrow \left\{ \begin{array}{l}
\lambda^2 = \pm 2i + o(1) \\
\text{or } \lambda^2 = \mathcal{O}(\varepsilon + \sqrt{\varepsilon \nu}).
\end{array} \right.
\]

"Eigenvectors": \(w_{\pm} = (1, \pm i) + o(1). \)
→ Basis of \(\mathbb{C}^2 \) for \(\varepsilon, \nu \) small enough.

Method: decompose the boundary condition (input of \(B \)) onto basis \(\{ w_+, w_- \} \).
Same formulas as before.
→ Uniform bounds in \(L^\infty, L^2 \).

Novelty: keep exact (\(\neq \) approximated) values for \(w_+, w_- \).
→ No error term of order \(\frac{1}{\lambda^2} \).
Atypical boundary layers: $\mu = \pm 1, k_h \neq 0$

$$\text{det } A_\lambda = 0 \Rightarrow \begin{cases} \lambda^2 = \pm 2i + o(1) \\
or \lambda^2 = O((\varepsilon + \sqrt{\varepsilon \nu})) \end{cases}.$$

"Eigenvectors": $w_{\pm} = (1, \pm i) + o(1)$.
→ Basis of \mathbb{C}^2 for ε, ν small enough.

Method: decompose the boundary condition (input of \mathcal{B}) onto basis $\{w_+, w_-\}$.
Same formulas as before.
→ Uniform bounds in L^∞, L^2.

Novelty: keep exact (\neq approximated) values for w_+, w_-.
→ No error term of order $\frac{1}{\lambda^2}$.
The almost-periodic, resonant case

Apparition of a singular profile: $\mu = \pm 1, k_h = 0$

Choosing for example $\mu = 1$, we derive

$$A_\lambda = \begin{pmatrix} i - \lambda^2 & -1 \\ 1 & i - \lambda^2 \end{pmatrix}.$$

Eigenvalues: $\lambda_-^2 = 2i$, $\lambda_+^2 = 0$;
Eigenvectors: $w_{\pm} = (1, \pm i)$.

Remark: define $\bar{u}^{\text{sing}} := \frac{Z}{(\varepsilon \nu)^{1/4}} e^{rac{it}{\varepsilon}} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}$. Then

$$\bar{u}^{\text{sing}}_{|z=0} = 0, \quad \partial_z \bar{u}^{\text{sing}}_{h|z=a} = \frac{1}{(\varepsilon \nu)^{1/4}} e^{rac{it}{\varepsilon}} \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

Conclusion: decompose the BC onto basis $\{w_+, w_-\}$.
Singular part of the “boundary layer” term is given by

$$u_{BL,h} = \left(\alpha B, + \frac{\alpha T, + Z}{(\varepsilon \nu)^{1/4}} \right) w_+ e^{rac{it}{\varepsilon}}.$$
Apparition of a singular profile: \(\mu = \pm 1, k_h = 0 \)

Choosing for example \(\mu = 1 \), we derive

\[
A_\lambda = \begin{pmatrix}
i - \lambda^2 & -1 \\
1 & i - \lambda^2
\end{pmatrix}.
\]

Eigenvalues: \(\lambda_-^2 = 2i, \lambda_+^2 = 0 \);

Eigenvectors: \(w_\pm = (1, \pm i) \).

Remark: define \(\bar{u}^{\text{sing}} := \frac{Z}{(\varepsilon \nu)^{\frac{1}{4}}} e^{it\frac{1}{\varepsilon}} \begin{pmatrix} 1 \\ i \end{pmatrix} \).

Then \(\bar{u}^{\text{sing}}|_{z=0} = 0, \partial_z \bar{u}^{\text{sing}}|_{z=a} = \frac{1}{(\varepsilon \nu)^{\frac{1}{4}}} e^{it\frac{1}{\varepsilon}} \begin{pmatrix} 1 \\ i \end{pmatrix} \).

Conclusion: decompose the BC onto basis \(\{w_+, w_-\} \).

Singular part of the “boundary layer” term is given by

\[
U_{BL,h} = \left(\alpha_{B,+} + \frac{\alpha_{T,+}Z}{(\varepsilon \nu)^{\frac{1}{4}}} \right) w_+ e^{it\frac{1}{\varepsilon}}.
\]
The almost-periodic, resonant case

Apparition of a singular profile: $\mu = \pm 1$, $k_h = 0$

Choosing for example $\mu = 1$, we derive

$$A_\lambda = \begin{pmatrix} i - \lambda^2 & -1 \\ 1 & i - \lambda^2 \end{pmatrix}.$$

Eigenvalues: $\lambda_-^2 = 2i$, $\lambda_+^2 = 0$;
Eigenvectors: $w_{\pm} = (1, \pm i)$.

Remark: define $\bar{u}^{\text{sing}} := \frac{Z}{(\varepsilon \nu)^{\frac{1}{4}}} e^{i t_{\varepsilon}} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}$. Then

$$\bar{u}^{\text{sing}}|_{z=0} = 0, \quad \partial_z \bar{u}^{\text{sing}}|_{z=a} = \frac{1}{(\varepsilon \nu)^{\frac{1}{4}}} e^{i t_{\varepsilon}} \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

Conclusion: decompose the BC onto basis $\{w_+, w_-\}$.
Singular part of the “boundary layer” term is given by

$$u_{BL,h} = \left(\alpha_{B,+} + \frac{\alpha_{T,+} + Z}{(\varepsilon \nu)^{\frac{1}{4}}} \right) w_+ e^{i t_{\varepsilon}}.$$
The almost-periodic, resonant case

Apparition of a singular profile: $\mu = \pm 1$, $k_h = 0$

Choosing for example $\mu = 1$, we derive

$$A_{\lambda} = \begin{pmatrix} i - \lambda^2 & -1 \\ 1 & i - \lambda^2 \end{pmatrix}.$$

Eigenvalues: $\lambda_-^2 = 2i$, $\lambda_+^2 = 0$;
Eigenvectors: $w_{\pm} = (1, \pm i)$.

Remark: define $\bar{u}^{\text{sing}} := \frac{Z}{(\varepsilon \nu)^{\frac{1}{4}}} e^{\frac{it}{\varepsilon}} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}$. Then

$$\bar{u}^{\text{sing}} \big|_{z=0} = 0, \quad \partial_z \bar{u}^{\text{sing}}_{h|z=a} = \frac{1}{(\varepsilon \nu)^{\frac{1}{4}}} e^{\frac{it}{\varepsilon}} \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

Conclusion: decompose the BC onto basis $\{ w_+, w_- \}$.
Singular part of the “boundary layer” term is given by

$$u_{BL,h} = \left(\alpha_{B,+} + \alpha_{T,+} \frac{Z}{(\varepsilon \nu)^{\frac{1}{4}}} \right) w_+ e^{\frac{it}{\varepsilon}}.$$
Plan

Introduction

The almost-periodic, resonant case
 Main result in the linear case
 The boundary layer operator
 The interior operator

The random stationary, non-resonant case
Decomposition of u_{int} for $k_h \neq 0$

Explicit construction:

$$u_{\text{int}} = \mathcal{U}[v_B, v_T, u_0]$$

such that u_{int} is a solution of the evolution equation and satisfies

$$u_{\text{int}}(t = 0) = u_0 + o(1), \; u_{\text{int},3}|_{z=0} = v_B, \; u_{\text{int},3}|_{z=a} = v_T.$$

Decomposition: $u_{\text{int}} = \mathcal{L}\left(\frac{t}{\varepsilon}\right)w(t) + v_{\text{int}} + u_{\text{int}}^{\text{osc}}$ where

- $w(t)$: preponderant term; matches initial data u_0;
- v_{int}: known explicitely;
- $u_{\text{int}}^{\text{osc}}$: oscillating term, takes into account rest of equation.
Decomposition of u_{int} for $k_h \neq 0$

Explicit construction:

$$u_{int} = U[v_B, v_T, u_0]$$

such that u_{int} is a solution of the evolution equation and satisfies

$$u_{int}(t = 0) = u_0 + o(1), \quad u_{int,3}|_{z=0} = v_B, \quad u_{int,3}|_{z=a} = v_T.$$

Decomposition:

$$u_{int} = L\left(\frac{t}{\epsilon}\right) w(t) + v_{int} + u_{int}^{osc}$$

where

- $w(t)$: preponderant term; matches initial data u_0;
- v_{int}: known explicitly;
- u_{int}^{osc}: oscillating term, takes into account rest of equation.
Decomposition of u_{int} for $k_h \neq 0$

Explicit construction:

$$u_{\text{int}} = \mathcal{U}[\nu_B, \nu_T, u_0]$$

such that u_{int} is a solution of the evolution equation and satisfies

$$u_{\text{int}}(t = 0) = u_0 + o(1), \quad u_{\text{int},3|z=0} = \nu_B, \quad u_{\text{int},3|z=a} = \nu_T.$$

Decomposition:

$$u_{\text{int}} = \mathcal{L} \left(\frac{t}{\varepsilon} \right) w(t) + \nu_{\text{int}} + u_{\text{osc}}$$

where

- $w(t)$: preponderant term; matches initial data u_0;
- ν_{int}: known explicitly;
- $u^{\text{osc}}_{\text{int}}$: oscillating term, takes into account rest of equation.

$$\hat{\nu}_{\text{int}}(t, k_h, \mu) := \begin{pmatrix} ik_h \frac{\hat{\nu}_T(t, k_h, \mu) - \hat{\nu}_B(t, k_h, \mu)}{|k_h|^2} \\ \hat{\nu}_T(t, k_h, \mu) z + \hat{\nu}_B(t, k_h, \mu)(1 - z) \end{pmatrix}.$$
The almost-periodic, resonant case

Decomposition of u_{int} **for** $k_h \neq 0$

Explicit construction:

$$u_{\text{int}} = U[v_B, v_T, u_0]$$

such that u_{int} is a solution of the evolution equation and satisfies

$$u_{\text{int}}(t = 0) = u_0 + o(1), \quad u_{\text{int},3|z=0} = v_B, \quad u_{\text{int},3|z=a} = v_T.$$

Decomposition:

$$u_{\text{int}} = \mathcal{L}\left(\frac{t}{\varepsilon}\right)w(t) + v_{\text{int}} + u_{\text{int}}^{\text{osc}}$$

where

- $w(t)$: preponderant term; matches initial data u_0;
- v_{int}: known explicitely;
- $u_{\text{int}}^{\text{osc}}$: oscillating term, takes into account rest of equation.
Decomposition of u_{int} for $k_h \neq 0$

Explicit construction:

$$u_{\text{int}} = \mathcal{U}[\nu_B, \nu_T, u_0]$$

such that u_{int} is a solution of the evolution equation and satisfies

$$u_{\text{int}}(t = 0) = u_0 + o(1), \quad u_{\text{int},3|z=0} = \nu_B, \quad u_{\text{int},3|z=a} = \nu_T.$$

Decomposition: $u_{\text{int}} = \mathcal{L}\left(\frac{t}{\varepsilon}\right) w(t) + \nu_{\text{int}} + u_{\text{int}}^{\text{osc}}$ where

- $w(t)$: preponderant term; matches initial data u_0;
- ν_{int}: known explicitly;
- $u_{\text{int}}^{\text{osc}}$: oscillating term, takes into account rest of equation.

Envelope equation:

$$\partial_t w - \Delta_h w = -\frac{2}{\varepsilon} \sum_{l \in \mathbb{Z}^3} \frac{n_3(l)}{|l|} \left[\hat{\nu}_B(t, l_h, \lambda_l) - (-1)^l \hat{\nu}_T(t, l_h, \lambda_l) \right].$$
The almost-periodic, resonant case

Singular profile for $k_h = 0$

Problem: recall singular profile

$$\bar{u}^{\text{sing}} = \sum_{\pm} \left(\alpha_{B,\pm} + \frac{\alpha_T,\pm Z}{(\varepsilon \nu)^{1/4}} \right) w_{\pm} e^{\pm i^t_{\varepsilon}}.$$

Does not match initial condition!

Idea: build $u^{\text{sing}} := \bar{u}^{\text{sing}} + u^{\text{sing}}_{\text{osc}}$, where

$$\partial_t u^{\text{sing}}_{\text{osc}} + \frac{1}{\varepsilon} Lu^{\text{sing}}_{\text{osc}} - \nu \partial^2_z u^{\text{sing}}_{\text{osc}} = 0$$

$$u^{\text{sing}}_{\text{osc}}(t = 0) = -\bar{u}^{\text{sing}}(t = 0),$$

$$u^{\text{sing}}_{\text{osc},h|z=0} = 0, \quad \partial_z u^{\text{sing}}_{\text{osc},h|z=a} = 0 \ (t > 0),$$

$$u^{\text{sing}}_{\text{osc},3} \equiv 0.$$

Remark: no stabilization.
Singular profile for \(k_h = 0 \)

Problem: recall singular profile

\[
\bar{u}^{\text{sing}} = \sum_{\pm} \left(\alpha_{B,\pm} + \alpha_{T,\pm} \frac{z}{(\varepsilon \nu)^{\frac{1}{4}}} \right) w_\pm e^{\pm \frac{t}{\varepsilon}}.
\]

Does not match initial condition!

Idea: build \(u^{\text{sing}} := \bar{u}^{\text{sing}} + u^{\text{sing}}_{\text{osc}} \), where

\[
\partial_t u^{\text{sing}}_{\text{osc}} + \frac{1}{\varepsilon} Lu^{\text{sing}}_{\text{osc}} - \nu \partial_z^2 u^{\text{sing}}_{\text{osc}} = 0
\]

\[
u_{\text{osc}} (t = 0) = -\bar{u}^{\text{sing}}(t = 0),
\]

\[
u^{\text{sing}}_{\text{osc}, h|z=0} = 0, \quad \partial_z u^{\text{sing}}_{\text{osc}, h|z=a} = 0 (t > 0),
\]

\[
u^{\text{sing}}_{\text{osc}, 3} \equiv 0.
\]

Remark: no stabilization.
Singular profile for $k_h = 0$

Problem: recall singular profile

$$\bar{u}^{\text{sing}} = \sum_{\pm} \left(\alpha_{B,\pm} + \frac{\alpha_T,\pm Z}{(\varepsilon \nu)^{\frac{1}{4}}} \right) w_{\pm} e^{\pm i \frac{t}{\varepsilon}}.$$

Does not match initial condition!

Idea: build $u^{\text{sing}} := \bar{u}^{\text{sing}} + u^{\text{sing}}_\text{osc}$, where

$$\partial_t u^{\text{sing}}_\text{osc} + \frac{1}{\varepsilon} L u^{\text{sing}}_\text{osc} - \nu \partial_z^2 u^{\text{sing}}_\text{osc} = 0$$

$$u^{\text{sing}}_\text{osc} (t = 0) = -\bar{u}^{\text{sing}}(t = 0),$$

$$u^{\text{sing}}_{\text{osc},h|z=0} = 0, \quad \partial_z u^{\text{sing}}_{\text{osc},h|z=a} = 0 \ (t > 0),$$

$$u^{\text{sing}}_{\text{osc},3} \equiv 0.$$

Remark: no stabilization.
The almost-periodic, resonant case

Conclusion of the almost-periodic case

Linear problem:
- Apparition of atypical boundary layers due to resonant forcing ($\mu = \pm 1$) on the non-homogeneous modes ($k_h \neq 0$).
- Singular profile ($\mu = \pm 1, k_h = 0$) which destabilizes the whole fluid for arbitrary initial data.
- Linearity of the equation enables explicit calculations.

Nonlinear problem:
Recent result: stability of singular profile in H^s norm and when the amplitude of the wind-stress is not too large.
Proof based on analysis of resonant modes: $\lambda_k - \lambda_l = \pm 1$.
Conclusion of the almost-periodic case

Linear problem:
- Apparition of *atypical boundary layers* due to resonant forcing ($\mu = \pm 1$) on the non-homogeneous modes ($k_h \neq 0$).
- Singular profile ($\mu = \pm 1, k_h = 0$) which destabilizes the whole fluid for arbitrary initial data.
- Linearity of the equation enables explicit calculations.

Nonlinear problem:
- Recent result: stability of singular profile in H^s norm and when the amplitude of the wind-stress is not too large.
- Proof based on analysis of resonant modes: $\lambda_k - \lambda_I = \pm 1$.
Conclusion of the almost-periodic case

Linear problem:
- Apparition of atypical boundary layers due to resonant forcing ($\mu = \pm 1$) on the non-homogeneous modes ($k_h \neq 0$).
- Singular profile ($\mu = \pm 1$, $k_h = 0$) which destabilizes the whole fluid for arbitrary initial data.
- Linearity of the equation enables explicit calculations.

Nonlinear problem:
Recent result: stability of singular profile in H^s norm and when the amplitude of the wind-stress is not too large. Proof based on analysis of resonant modes: $\lambda_k - \lambda_l = \pm 1$.
Plan

Introduction

The almost-periodic, resonant case

The random stationary, non-resonant case
 Convergence result
 The limit equation
The random stationary, non-resonant case

The stationary setting

Recall that

\[\sigma = S \left(t, x_h, \theta \frac{t}{\varepsilon} \omega \right). \]

Assumption of non-resonance: (avoid singular profile)

Define approximate Fourier transform: for \(\gamma > 0 \),

\[\hat{\sigma}_\gamma(\lambda, \omega) := \frac{1}{2\pi} \int_{\mathbb{R}} \exp(-\gamma |\tau|) e^{-i\lambda \tau} \sigma(\tau, \omega) \, d\tau. \]

Assume that

(H1) \(\forall \gamma > 0, \hat{\sigma}_\gamma \in L^\infty(E, L^1(\mathbb{R})) \), and

\[\sup_{\gamma > 0} \| \hat{\sigma}_\gamma \|_{L^\infty(E, L^1(\mathbb{R}))} < +\infty. \]

(H2) \(\exists \) neighbourhoods \(V_\pm \) of \(\pm 1 \), independent of \(\gamma > 0 \), such that

\[\lim_{\gamma \to 0} \sup_{\lambda \in V_+ \cup V_-} |\hat{\sigma}_\gamma(\lambda)| = 0. \]
The random stationary, non-resonant case

The stationary setting

Recall that

\[\sigma = S \left(t, x_h, \frac{\theta}{\varepsilon} \omega \right) . \]

Assumption of non-resonance : (avoid singular profile)

Define approximate Fourier transform : for \(\gamma > 0 \),

\[\hat{\sigma}_\gamma(\lambda, \omega) := \frac{1}{2\pi} \int_{\mathbb{R}} \exp(-\gamma|\tau|)e^{-i\lambda\tau}\sigma(\tau, \omega) \, d\tau. \]

Assume that

(H1) \(\forall \gamma > 0, \hat{\sigma}_\gamma \in L^\infty(E, L^1(\mathbb{R})), \) and

\[\sup_{\gamma > 0} \| \hat{\sigma}_\gamma \|_{L^\infty(E, L^1(\mathbb{R}))} < +\infty. \]

(H2) \(\exists \) neighbourhoods \(V_\pm \) of \(\pm 1 \), independent of \(\gamma > 0 \), such that

\[\lim_{\gamma \to 0} \sup_{\lambda \in V_+ \cup V_-} |\hat{\sigma}_\gamma(\lambda)| = 0. \]
Recall that

$$\sigma = S\left(t, x_h, \frac{\theta t}{\epsilon}, \omega\right).$$

Assumption of non-resonance: (avoid singular profile)
Define approximate Fourier transform: for $\gamma > 0$,

$$\hat{\sigma}_\gamma(\lambda, \omega) := \frac{1}{2\pi} \int_{\mathbb{R}} \exp(-\gamma|\tau|) e^{-i\lambda\tau} \sigma(\tau, \omega) \, d\tau.$$

Assume that

(H1) $\forall \gamma > 0$, $\hat{\sigma}_\gamma \in L^\infty(E, L^1(\mathbb{R}))$, and

$$\sup_{\gamma > 0} \left\| \hat{\sigma}_\gamma \right\|_{L^\infty(E, L^1(\mathbb{R}))} < +\infty.$$

(H2) \exists neighbourhoods V_\pm of ± 1, independent of $\gamma > 0$, such that

$$\lim_{\gamma \to 0} \sup_{\lambda \in V_+ \cup V_-} |\hat{\sigma}_\gamma(\lambda)| = 0.$$
Plan

Introduction

The almost-periodic, resonant case

The random stationary, non-resonant case
 Convergence result
 The limit equation
Convergence result in the nonlinear stationary case

Theorem: [D., 2007] Let \(u = u^{\varepsilon, \nu} \) be the solution of

\[
\begin{cases}
 \partial_t u + \frac{1}{\varepsilon} Lu + u \cdot \nabla u - \nu \partial_z^2 u - \Delta_h u + \nabla p = 0, \\
 \text{div} u = 0, \\
 u|_{z=0} = 0, \\
 u_3|_{z=a} = 0, \\
 \partial_z u_h|_{z=a}(t) = \frac{1}{(\varepsilon \nu)^{1/2}} \sigma \left(t, \frac{t}{\varepsilon}, x_h, \omega \right).
\end{cases}
\]

Let \(w \in L^{\infty}(0, T^*; H^s) \) (\(s > 5/2 \)) be the solution of the envelope equation, and assume that (H1)-(H2) are satisfied. Then as \(\varepsilon, \nu \to 0 \)

\[
u^{\varepsilon, \nu} - \left(\exp \left(\frac{t}{\varepsilon} L \right) w(t) \right) \to 0,
\]

in \(L^{\infty}(0, T; L^2) \cap L^2(0, T; H^1_h) \) for all \(T < T^* \).

Remark: \(w \) is random!
Convergence result in the nonlinear stationary case

Theorem: [D., 2007] Let \(u = u^{\varepsilon, \nu} \) be the solution of

\[
\begin{aligned}
\partial_t u + \frac{1}{\varepsilon} Lu + u \cdot \nabla u - \nu \partial_z^2 u - \Delta_h u + \nabla p &= 0, \\
d \text{div} u &= 0, \\
u |_{z=0} &= 0, \\
u_3 |_{z=a} &= 0, \\
\partial_z u_h |_{z=a}(t) &= \frac{1}{(\varepsilon \nu)^{\frac{1}{2}}} \sigma \left(t, \frac{t}{\varepsilon}, x_h, \omega \right).
\end{aligned}
\]

Let \(w \in L^\infty(0, T^*; H^s) \) \((s > 5/2)\) be the solution of the envelope equation, and assume that (H1)-(H2) are satisfied. Then as \(\varepsilon, \nu \to 0 \)

\[
u^{\varepsilon, \nu} - \left(\exp \left(\frac{t}{\varepsilon} L \right) w(t) \right) \to 0,
\]

in \(L^\infty(0, T; L^2) \cap L^2(0, T; H^1_h) \) for all \(T < T^* \).

Remark: \(w \) is random!
The random stationary, non-resonant case

Elements of the proof

Same strategy as in almost-periodic case. Main features:

- No atypical boundary layer terms (non-resonance);
- Boundary layer terms are random stationary in time;
- Average behaviour of oscillating functions: ergodic

Theorem:

Lemma

Let $\phi \in L^1(E, \mu)$, and let $\lambda \in \mathbb{R}$. Then $\exists \bar{\phi}^\lambda \in L^1(E)$,

$$\frac{1}{T} \int_0^T \phi(\theta \tau \omega) e^{-i \lambda \tau} d\tau \rightarrow \bar{\phi}^\lambda$$

a.s. and in L^1.
Elements of the proof

Same strategy as in almost-periodic case. Main features:

- **No atypical boundary layer terms** (non-resonance);
- Boundary layer terms are random stationary in time;
- Average behaviour of oscillating functions: ergodic

Theorem:

Lemma

Let $\phi \in L^1(E, \mu)$, and let $\lambda \in \mathbb{R}$. Then $\exists \tilde{\phi}^\lambda \in L^1(E)$,

$$\frac{1}{T} \int_0^T \phi(\theta_T \omega) e^{-i \lambda \tau} \, d\tau \to \tilde{\phi}^\lambda$$

a.s. and in L^1.

The random stationary, non-resonant case
The random stationary, non-resonant case

Elements of the proof

Same strategy as in almost-periodic case. Main features:

- **No atypical boundary layer terms** (non-resonance);
- Boundary layer terms are random stationary in time;
- Average behaviour of oscillating functions: **ergodic**

Theorem

Lemma

Let \(\phi \in L^1(E, \mu) \), and let \(\lambda \in \mathbb{R} \). Then \(\exists \phi^\lambda \in L^1(E) \),

\[
\frac{1}{T} \int_0^T \phi(\theta_\tau \omega) e^{-i\lambda \tau} \, d\tau \to \phi^\lambda
\]

a.s. and in \(L^1 \).
The random stationary, non-resonant case

Elements of the proof

Same strategy as in almost-periodic case. Main features:

▶ No atypical boundary layer terms (non-resonance);
▶ Boundary layer terms are random stationary in time;
▶ Average behaviour of oscillating functions: \textit{ergodic Theorem}:

Lemma

Let $\phi \in L^1(E, \mu)$, and let $\lambda \in \mathbb{R}$. Then $\exists \bar{\phi}^\lambda \in L^1(E)$,

$$
\frac{1}{T} \int_0^T \phi(\theta_\tau \omega) e^{-i\lambda \tau} \, d\tau \to \bar{\phi}^\lambda
$$

a.s. and in L^1.
Plan

Introduction

The random stationary, non-resonant case

Convergence result

The limit equation

The almost-periodic, resonant case
The function w is a solution of

$$
\begin{cases}
\partial_t w + \bar{Q}(w, w) - \Delta_h w + \bar{S}_B(w) + \bar{S}_T(\omega) = 0, \\
\text{Ekman pumping}
\end{cases}
$$

$$
\left\{
\begin{aligned}
w(t = 0) &= w_0 \in H^s, \quad \text{div}w_0 = 0, \\
\text{div}w &= 0, \\
w_3|_{z=0} &= 0, \quad w_3|_{z=a} = 0,
\end{aligned}
\right.
$$

In general, w is random... However, $\bar{w} = 1/a \int_0^a w$ is not !

$$
\begin{cases}
\partial_t \bar{w} + P(\bar{w} \cdot \nabla \bar{w}) - \Delta_h \bar{w} + \bar{S}_B(\bar{w}) + E[\bar{S}_T] = 0, \\
\bar{w}(t = 0) = \bar{w}_0 = \frac{1}{a} \int_0^a w_0.
\end{cases}
$$

Question : equation on $E[w] - \bar{w}$? (vertical modes)
The random stationary, non-resonant case

The envelope equation

The function w is a solution of

\[
\begin{align*}
\partial_t w + \tilde{Q}(w, w) - \Delta_h w + \tilde{S}_B(w) + \tilde{S}_T(\omega) &= 0, \\
& \text{Ekman pumping} \\
\end{align*}
\]

\[
\begin{align*}
w(t = 0) &= w_0 \in H^s, \quad \text{div} w_0 = 0, \\
\text{div} w &= 0, \\
w_3|_{z=0} &= 0, \quad w_3|_{z=a} = 0,
\end{align*}
\]

In general, w is random... However, $\tilde{w} = 1/a \int_0^a w$ is not!

\[
\begin{align*}
\partial_t \tilde{w} + P(\tilde{w} \cdot \nabla \tilde{w}) - \Delta_h \tilde{w} + \tilde{S}_B(\tilde{w}) + E [\tilde{S}_T] &= 0, \\
\tilde{w}(t = 0) &= \tilde{w}_0 = \frac{1}{a} \int_0^a w_0.
\end{align*}
\]

Question: equation on $E[w] - \tilde{w}$? (vertical modes)
The function w is a solution of

$$\begin{cases}
\partial_t w + \bar{Q}(w, w) - \Delta_h w + \bar{S}_B(w) + \bar{S}_T(\omega) = 0, \\
 w(t = 0) = w_0 \in H^s, \quad \text{div} w_0 = 0, \\
 \text{div} w = 0, \\
 w_3|_{z=0} = 0, \ w_3|_{z=a} = 0,
\end{cases}$$

Ekman pumping

In general, w is random... However, $\bar{w} = 1/a \int_0^a w$ is not!

$$\begin{cases}
\partial_t \bar{w} + P(\bar{w} \cdot \nabla \bar{w}) - \Delta_h \bar{w} + \bar{S}_B(\bar{w}) + \mathcal{E}[\bar{S}_T] = 0, \\
 \bar{w}(t = 0) = \bar{w}_0 = \frac{1}{a} \int_0^a w_0.
\end{cases}$$

Question: equation on $\mathcal{E}[w] - \bar{w}$? (vertical modes)
If the torus is non-resonant, then
\[
\bar{Q}(\bar{w}, w) = \bar{Q}(\bar{w}, \bar{w}) + \bar{Q}(\bar{w}, w - \bar{w}) + \bar{Q}(w - \bar{w}, \bar{w}) =: q(\bar{w}, w - \bar{w}).
\]

→ The limit equation decouples: \(w = \bar{w} + \tilde{w}_1 + \tilde{w}_2 \), where

- \(\tilde{w} \): nonlinear deterministic equation;
- \(\tilde{w}_1 \): linear deterministic equation:
 \[
 \begin{cases}
 \partial_t \tilde{w}_1 + q(\bar{w}, \tilde{w}_1) - \Delta_h \tilde{w}_1 + \tilde{S}_B(\tilde{w}_1) = 0, \\
 \tilde{w}_1(t = 0) = w_0 - \bar{w}_0;
 \end{cases}
 \]

- \(\tilde{w}_2 \): linear random equation, \(E[\tilde{w}_2] = 0 \):
 \[
 \begin{cases}
 \partial_t \tilde{w}_2 + q(\bar{w}, \tilde{w}_2) - \Delta_h \tilde{w}_2 + \tilde{S}_T - E[\tilde{S}_T] = 0, \\
 \tilde{w}_2(t = 0) = 0.
 \end{cases}
 \]
The random stationary, non-resonant case

Limit system in the case of non-resonant torus

If the torus is non-resonant, then

\[\bar{Q}(w, w) = \bar{Q}(\bar{w}, \bar{w}) + \bar{Q}(\bar{w}, w - \bar{w}) + \bar{Q}(w - \bar{w}, \bar{w}) =: q(\bar{w}, w - \bar{w}) \]

→ **The limit equation decouples**: \(w = \bar{w} + \tilde{w}_1 + \tilde{w}_2 \), where

- \(\bar{w} \): nonlinear deterministic equation;
- \(\tilde{w}_1 \): linear deterministic equation:
 \[
 \begin{cases}
 \partial_t \tilde{w}_1 + q(\bar{w}, \tilde{w}_1) - \Delta_h \tilde{w}_1 + \bar{S}_B(\tilde{w}_1) = 0, \\
 \tilde{w}_1(t = 0) = w_0 - \bar{w}_0;
 \end{cases}
 \]

- \(\tilde{w}_2 \): linear random equation, \(E[\tilde{w}_2] = 0 \):
 \[
 \begin{cases}
 \partial_t \tilde{w}_2 + q(\bar{w}, \tilde{w}_2) - \Delta_h \tilde{w}_2 + \bar{S}_T - E[\bar{S}_T] = 0, \\
 \tilde{w}_2(t = 0) = 0.
 \end{cases}
 \]
The random stationary, non-resonant case

Limit system in the case of non-resonant torus

If the torus is non-resonant, then

$$\tilde{Q}(w, w) = \tilde{Q}(\tilde{w}, \tilde{w}) + \tilde{Q}(\tilde{w}, w - \tilde{w}) + \tilde{Q}(w - \tilde{w}, \tilde{w}) =: q(\tilde{w}, w - \tilde{w})$$

→ **The limit equation decouples**: $w = \tilde{w} + \tilde{w}_1 + \tilde{w}_2$, where

- \tilde{w}: nonlinear deterministic equation;
- \tilde{w}_1: linear deterministic equation:

 $$\begin{cases}
 \partial_t \tilde{w}_1 + q(\tilde{w}, \tilde{w}_1) - \Delta_h \tilde{w}_1 + \tilde{S}_B(\tilde{w}_1) = 0, \\
 \tilde{w}_1(t = 0) = w_0 - \tilde{w}_0;
 \end{cases}$$

- \tilde{w}_2: linear random equation, $E[\tilde{w}_2] = 0$:

 $$\begin{cases}
 \partial_t \tilde{w}_2 + q(\tilde{w}, \tilde{w}_2) - \Delta_h \tilde{w}_2 + \tilde{S}_T - E[\tilde{S}_T] = 0, \\
 \tilde{w}_2(t = 0) = 0.
 \end{cases}$$
Limit system in the case of non-resonant torus

If the torus is non-resonant, then

\[
\bar{Q}(w, w) = \bar{Q}(\bar{w}, \bar{w}) + \bar{Q}(\bar{w}, w - \bar{w}) + \bar{Q}(w - \bar{w}, \bar{w}) =: q(\bar{w}, w - \bar{w})
\]

→ The limit equation decouples: \(w = \bar{w} + \tilde{w}_1 + \tilde{w}_2 \), where

- \(\bar{w} \): nonlinear deterministic equation;
- \(\tilde{w}_1 \): linear deterministic equation:

\[
\begin{align*}
\frac{\partial_t}{\partial t} \tilde{w}_1 + q(\bar{w}, \tilde{w}_1) - \Delta_h \tilde{w}_1 + \bar{S}_B(\tilde{w}_1) &= 0, \\
\tilde{w}_1(t = 0) &= w_0 - \bar{w}_0;
\end{align*}
\]

- \(\tilde{w}_2 \): linear random equation, \(E[\tilde{w}_2] = 0 \):

\[
\begin{align*}
\frac{\partial_t}{\partial t} \tilde{w}_2 + q(\bar{w}, \tilde{w}_2) - \Delta_h \tilde{w}_2 + \bar{S}_T - E[\bar{S}_T] &= 0, \\
\tilde{w}_2(t = 0) &= 0.
\end{align*}
\]
Perspectives

- Include treatment of singular profile in the random case (avoid non-resonance assumptions);
- Use β-plane instead of f-plane model (variations of Coriolis parameter);
- Consider more general boundaries (different types of boundary layers are expected);
- Work with density-dependent models.