Chiffres-clé
Chiffres clefs
189 personnes travaillent au LJLL
86 permanents
80 chercheurs et enseignants-chercheurs permanents
6 ingénieurs, techniciens et personnels administratifs
103 personnels non permanents
74 doctorants
15 post-doc et ATER
14 émérites et collaborateurs bénévoles
Chiffres janvier 2022
Nos thèmes de recherche
Retrouvez la page du Laboratoire Jacques-Louis Lions sur HAL
Nos themes de recherche
- Optimal control
- Homogenization
- Asymptotic analysis
- Mathematical biology
- Fluid-structure interaction
- Finite element method
- Shape optimization
- Controllability
- Partial differential equations
- Wave equation
- Navier-Stokes equations
- Domain decomposition
- Inverse problem
- Stability
- Finite elements
- Data assimilation
- Finite volume method
- Hyperbolic systems
- Numerical analysis
- Numerical simulations
- Viscosity solutions
- Heat equation
- Reaction-diffusion equations
- Stabilization
- Hamilton-Jacobi equations
- Nonlinear elasticity
- Shells
- Elasticity
- Linear elasticity
- Neural networks
- Optimization
- Transport equation
- Backstepping
- Cancer
- Chemotaxis
- Error estimates
- Analyse asymptotique
- Inverse problems
- Schrödinger equation
- Tumor growth
- Analyse numérique
- Calculus of variations
- Finite volume
- Gross-Pitaevskii equation
- Level set method
- Mathematical modeling
- Null controllability
- Traveling waves
- Blood flow
- Control
- Contrôle optimal
- Convergence
- Domain decomposition methods
- Hamilton-Jacobi equation
- Hemodynamics
- Numerical methods
- Numerical simulation
- Population dynamics
- Boltzmann equation
- Finite volume scheme
- Modeling
- Pontryagin maximum principle
- Quantum control
- Asymptotic behavior
- Gamma-convergence
- Kinetic equations
- Modélisation
- Optimisation de forme
- Uncertainty quantification
- Adaptive evolution
- Boundary conditions
- Cell population dynamics
- Finite element
- General relativity
- Incompressible fluid
- Integro-differential equations
- Maximum principle
- Maxwell equations
- Mean field games
- Observability
- Periodic homogenization
- Radiative transfer
- Reduced basis method
- Sub-Riemannian geometry
- Dimension reduction
- Discontinuous Galerkin
- Existence
- Finite volumes
- FreeFem++
- Grenoble
- Hyperbolic system
- Imaging in complex media
- Incompressible limit
- Interaction fluide-structure
- Parallel computing
- Parameter estimation
- Relaxation
- Robustness
- Stability analysis
- Structured populations