Résumé

En mécanique des fluides, les modèles lagrangiens stochastiques s’apparentent aux méthodes PDF pour la turbulence, qui utilisent un modèle d’évolution de la fonction de densité de probabilité (PDF) du champ de vitesse de l’écoulement pour en calculer les propriétés turbulentes. Si le mouvement d’une particule de fluide est décrit par une équation différentielle stochastique (EDS), sa probabilité de présence sera décrite par l’équation de Fokker Planck associée, et sa probabilité de présence conditionnelle-à-la-position produira la fonction de densité de probabilité du champ de vitesse recherchée. Reste à bien choisir cette équation différentielle stochastique pour récupérer la fermeture voulue parmi les grandes familles de fermetures de la turbulence.

Les modèles lagrangiens stochastiques (dits aussi modèles de particules-fluide) forment une famille d’équations différentielles stochastiques non linéaires au sens de McKean, dont l’analyse du caractère bien posé est encore au stade des modélisations très simplifiées. L’exposé donnera quelques résultats récents dans cette direction.

Pour résoudre numériquement les modélisations lagrangiennes stochastiques, nous utilisons un algorithme particulaire qui s’appuie sur un estimateur de l’espérance conditionnelle. Cette méthode particulaire s’apparente à une méthode de Monte-Carlo en termes de vitesse de convergence, mais le principe sous-jacent reste un principe de propagation du chaos pour des particules en interaction champs moyen. J’évoquerai de récents résultats de vitesse de convergence. En termes de simulation, on verra que ces méthodes particulières s’adaptent bien à la simulation de circulation autour d’éoliennes ou à des fins de raffinement d’échelles en météorologie.
Abstract

In our talk we present a new robust, accurate and very simple a posteriori subcell finite volume limiter technique for the Discontinuous Galerkin (DG) finite element method for nonlinear systems of hyperbolic partial differential equations in multiple space dimensions that works well for arbitrary high order of accuracy in space and time and that does not destroy the natural subcell resolution properties of the DG method. High order time discretization is achieved via a fully-discrete one-step ADER approach that uses a local space-time discontinuous Galerkin predictor method to evolve the data locally in time within each cell.

The new limiting strategy is based on a novel a posteriori verification of the validity of a discrete candidate solution against physical and numerical detection criteria. In particular, we employ a relaxed discrete maximum principle, the positivity of the numerical solution and the absence of floating point errors as detection criteria. For those troubled cells that need limiting, our new approach recomputes the discrete solution by starting again from a valid solution at the old time level, but using a more robust finite volume scheme on a refined subgrid of $N_s = 2N + 1$ subcells, where $N$ is the polynomial approximation degree of the DG scheme. The new method can be interpreted as an element-local check-pointing and restarting of the solver, but using a more robust scheme on a finer mesh after the restart.

The performance of the new method is shown on a large set of different hyperbolic partial differential equations systems using uniform and space-time adaptive Cartesian grids (AMR), as well as on unstructured meshes in two and three space dimensions.

The presented research was financed by the European Research Council (ERC) with the research project STiMulUs, ERC Grant agreement no. 278267.
results, of the possible lack of existence/uniqueness of entropy solutions within the standard framework of integrable functions. It is in this context that entropy measure-valued solutions offer the more general solution paradigm. Solutions are interpreted in an average sense as part of an ensemble average in configuration space.

We revisit the general framework of numerical entropy stability. Our approach is based on comparing numerical viscosities with entropy conservative schemes. We demonstrate this approach with entropy conservative fluxes which serve as the building block for a class of non-oscillatory entropy stable schemes of arbitrarily high-order of accuracy, so-called TeCNO schemes.

We then outline a viable numerical algorithm to compute entropy measure-valued solutions, based on realization of approximate measures as laws of Monte Carlo sampled random fields. Numerical experiments, including recent TeCNO-based computation of entropy measure-valued solutions, provide a convincing evidence for the viability of the new paradigm.

24 juin 2016
14h00  Michael Struwe  (Ecole Polytechnique Fédérale de Zurich)
Prescribed curvature flow on surfaces

Abstract
As shown by Hamilton and Chow, on any closed Riemann surface the Ricci flow converges exponentially fast to a metric of constant Gauss curvature. The situation is different when looking for metrics of prescribed Gauss curvature. In particular, there are functions $f$ on the sphere where the prescribed curvature flow degenerates to a flow of bubbles whose centers follow the gradient of $f$. The talk will focus on the prescribed curvature flow on the torus.

01 juillet 2016
14h00  Andrea Malchiodi  (Ecole Normale Supérieure de Pise)
Variational theory for an $SU(3)$ Toda system

Abstract
We consider a variational system of Liouville equations motivated by models in Chern-Simons theory with $SU(3)$ gauge group. The same system also appears in the description of holomorphic curves into projective spaces. We analyze the interaction of the system components by looking at the location and the scales of concentration points. We will employ then a topological join construction to characterize low-energy levels of the Euler-Lagrange energy and to deduce existence of solutions via improved geometric inequalities.

30 septembre ou 7 octobre 2016
14h00  Reprise du séminaire

Eitan Tadmor (Université du Maryland)

Mini-cours : lundi 13, mardi 14 et mercredi 15 juin 2016 de 11h30 à 13h00
Collective dynamics: flocking, emergence of patterns and social hydrodynamics

Colloquium : vendredi 17 juin 2016 à 14h00
Computation of entropy measure-valued solutions for Euler equations


Le séminaire du Laboratoire Jacques-Louis Lions a lieu
le vendredi à 14h00
Université Pierre et Marie Curie (Paris VI)
Campus Jussieu, 4 place Jussieu, Paris 5ème
barre 15–16, 3ème étage, salle 09 (15-16-309)

Le programme du séminaire, les résumés des exposés et les versions pdf de ceux ci sont disponibles sur la page web
http://www.ljll.math.upmc.fr/fr/seminaires/seminaire_du_laboratoire.html

Pour recevoir (ou ne plus recevoir) chaque mois le programme par courrier électronique, envoyer un message à
Semiaire-du-LJLL@ann.jussieu.fr

Renseignements et informations :
Yves Achdou : achdou@ljll.univ-paris-diderot.fr
Fabrice Béthuel : bethuel@ann.jussieu.fr
Albert Cohen : cohen@ann.jussieu.fr
Josselin Garnier : garnier@math.jussieu.fr
Yvon Maday : maday@ann.jussieu.fr
François Murat : murat@ann.jussieu.fr
Benoît Perthame : perthame@ann.jussieu.fr
Laure Saint-Raymond : saintray@ann.jussieu.fr