Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

5 postes ATER en mathématiques à Sorbonne Université
date limite le 5 avril à 16h
Détails ici


Chiffres clefs

189 personnes travaillent au LJLL

90 permanents

82 chercheurs et enseignants-chercheurs permanents

8 ingénieurs, techniciens et personnels administratifs

99 personnels non permanents

73 doctorants

14 post-doc et ATER

12 émérites et collaborateurs bénévoles


Chiffres mars 2019


GdT Rencontres LJLL-INRIA

ATTENTION le GT Méthodes Numériques change en Rencontres Inria - LJLL en calcul scientifique

à partir du mois de mars. fenêtre fenêtre

Rencontres Inria - LJLL en calcul scientifique  I. Vignon-Clementel, M. Vohralik, F. Hecht




Les LUNDI à 11 heures ,

   UMPC, LJLL, salle de séminaire 15-16-309 (premier lundi du mois)



   INRIA de Paris, 2 rue S. Iff,  salle de séminaire salle Jacques-Louis Lions (troisième lundi du mois)


Rencontre exceptionnelle le Lundi 12 décembre 2016 au LJJLL à 11 heures , salle de séminaire 15-16-309

Title : Enriched Galerkin approximation for coupled flow and transport problems

Mary F. Wheeler
The Center for Subsurface Modeling,
Institute for Computational Engineering and Sciences,
The University of Texas at Austin. TX, USA

We present and analyze enriched Galerkin finite element methods (EG) to solve coupled flow and transport system with jump coefficients referred as miscible displacement problems.
The EG is formulated by enriching the conforming continuous Galerkin finite element method (CG) with piecewise constant functions. This approach is shown to be locally and globally
conservative while keeping fewer degrees of freedom in comparison with discontinuous Galerkin finite element methods (DG). Also, we present and analyze a fast and effective EG
solver for flow simpler than DG and whose cost is roughly that of CG and can handle an arbitrary order of approximations. Moreover, to avoid any spurious oscillations for the higher
order transport system, we employ an entropy residual stabilization technique. Dynamic mesh adaptivity using hanging nodes is applied to save computational cost for large-scale
physical problems. Some numerical tests in two and three dimensions are presented to confirm our theoretical results as well as to demonstrate the advantages of the EG. Computational
results for two phase flow in porous media are also discussed.

This work was done in collaborations with Sanghyun Lee and Young-Ju Lee.


Archives des années précédentes ...