Chiffres-clé
Chiffres clefs
189 personnes travaillent au LJLL
86 permanents
80 chercheurs et enseignants-chercheurs permanents
6 ingénieurs, techniciens et personnels administratifs
103 personnels non permanents
74 doctorants
15 post-doc et ATER
14 émérites et collaborateurs bénévoles
Chiffres janvier 2022
Séminaire du LJLL - 13 04 2017 14h00 : J. Fischer
Julian Fischer (Institut de la science et de la technologie d’Autriche, Klosterneuburg)
The choice of representative volumes for random materials
Résumé
The most widely employed method for determining the effective large-scale properties of random materials is the representative volume element (RVE) method : It basically proceeds by choosing a sample of the random material —the representative volume element— and computing its effective properties. To obtain an accurate approximation for the effective material properties, the RVE should reflect the statistical properties of the material well. Hence, it is desirable to choose a large sample of the random medium as an RVE. However, an increased size of the RVE comes with an increased computation cost. For this reason, there have been attempts in material science and mechanics towards capturing the statistical properties of the material in a better way in an RVE of a fixed size. We provide an analysis of an approach by Le Bris, Legoll, and Minvielle, which has been demonstrated to be quite effective in numerical examples.